2.23.2012
2.22.2012
吸盤作用文獻 by Stavros
Barber, V. C. (2010). The sense organs of Nautilus. Nautilus, 223-230.
Budelmann, B., Schipp, R. & Boletzky, S.v. (1997). Cephalopoda. Microscopic Anatomy of Invertebrates, 6(A), 119-414.
Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., et al. (2011). An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 6, 036-042.
Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., & Laschi, C. (2010). Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering: C, 31(6), 1230-1239.
Cyran, N., Klinger, L., Scott, R., Griffiths, C., Schwaha, T., Zheden, V., et al. (2010). Characterization of the Adhesive Systems in Cephalopods. Biological Adhesive Systems, 53-86.
Girod, P. (1884). Recherches sur la peau des céphalopodes. La ventouse. Arch. Zool. Exp. Gen, 2, 379-401.
Grasso, F. W. (2008). Octopus sucker-arm coordination in grasping and manipulation. American Malacological Bulletin, 24(1), 13-23.
Graziadei, P. (1962). Receptors in the suckers of Octopus. Nature, 195, 57-59.
Graziadei, P. (1964). Electron microscopy of some primary receptors in the sucker of Octopus vulgaris. Cell and Tissue Research, 64(4), 510-522.
Graziadei, P. (1965). Muscle receptors in cephalopods. Proceedings of the Royal Society of London. Series B. Biological Sciences, 161(984), 392.
Graziadei, P., & Gagne, H. (1976). Sensory innervation in the rim of the octopus sucker. Journal of Morphology, 150(3), 639-679.
Gutfreund, Y. (2000). The intricacies of flexible arms. Science Spectra(19), 28-37. can't find this anywhere anymore
Gutfreund, Y., Flash, T., Fiorito, G., & Hochner, B. (1998). Patterns of arm muscle activation involved in octopus reaching movements. The Journal of neuroscience, 18(15), 5976-5987.
Gutfreund, Y., Flash, T., Yarom, Y., Fiorito, G., Segev, I., & Hochner, B. (1996). Organization of octopus arm movements: a model system for studying the control of flexible arms. The Journal of neuroscience, 16(22), 7297-7307.
Gutnick, T., Byrne, R. A., Hochner, B., & Kuba, M. (2011). Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm. Current Biology, 21(6), 460-462.
Kier, W., & Thompson, J. (2003). Muscle arrangement, function and specialization in recent coleoids. Berliner Paläobiologische Abhandlungen, 3, 141-162.
Kier, W. M. (1982). The functional morphology of the musculature of squid (Loliginidae) arms and tentacles. Journal of Morphology, 172(2), 179-192.
Kier, W. M., & Smith, A. M. (1990). The morphology and mechanics of octopus suckers. The Biological Bulletin, 178(2), 126.
Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: the biomechanics of movement in muscular hydrostats. Zoological Journal of the Linnean Society, 83(4), 307-324.
Kier, W. M., & Stella, M. P. (2007). The arrangement and function of octopus arm musculature and connective tissue. Journal of Morphology, 268(10), 831-843.
Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., & Dario, P. (2009). Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 4, 015006.
Mather, J. A. (1998). How do octopuses use their arms? Journal of Comparative Psychology, 112(3), 306.
Matzner, H., Gutfreund, Y., & Hochner, B. (2000). Neuromuscular system of the flexible arm of the octopus: physiological characterization. Journal of Neurophysiology, 83(3), 1315-1328.
McMahan, W., & Walker, I. D. (2009). Octopus-inspired grasp-synergies for continuum manipulators.
Niven, J. E. (2011). Invertebrate Neurobiology: Visual Direction of Arm Movements in an Octopus. Current Biology, 21(6), R217-R218.
Nixon, M., & Dilly, P. (1977). Sucker surfaces and prey capture. Paper presented at the Symp. Zool. Soc. , London.
Packard, A. (1988). Visual tactics and evolutionary strategies. Cephalopods Present and Past, 89–103.
Rowell, C. (1963). Excitatory and inhibitory pathways in the arm of Octopus. Journal of experimental biology, 40(2), 257-270.
Rowell, C. (1966). Activity of interneurones in the arm of Octopus in response to tactile stimulation. Journal of experimental biology, 44(3), 589-605.
Smith, A. (1996). Cephalopod sucker design and the physical limits to negative pressure. Journal of experimental biology, 199(4), 949-958.
Smith, A. M. (1991). Negative pressure generated by octopus suckers: a study of the tensile strength of water in nature. Journal of experimental biology, 157(1), 257-271.
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T., & Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293(5536), 1845-1848.
Walker, I. D., Dawson, D. M., Flash, T., Grasso, F., Hanlon, R., Hochner, B., et al. (2005). Continuum robot arms inspired by cephalopods. Paper presented at the Proceedings of the 2005 SPIE Conference on Unmanned Ground Vehicle Technology IV, Orlando, Florida, USA.
Wells, M. (1963). Taste by touch: some experiments with Octopus. Journal of experimental biology, 40(1), 187-193.
Wells, M. J. (1978). Octopus. Physiology and Behaviour of an Advanced Invertebrate. Chapman and Hall, London.
Woolley, B., & Stanley, K. (2011). Evolving a single scalable controller for an octopus arm with a variable number of segments. Parallel Problem Solving from Nature–PPSN XI, 270-279.
VAVOURAKIS, V., KAZAKIDI, A., & TSAKIRIS, D. (2011). A FINITE ELEMENT METHOD FOR NON-LINEAR HYPERELASTICITY APPLIED FOR THE SIMULATION OF OCTOPUS ARM MOTIONS. ics.forth.gr. Retrieved from http://www.ics.forth.gr/~ kazakidi/pu...as_coupled.pdf
Young, J. (1963). The number and sizes of nerve cells in Octopus. Paper presented at the Proceedings of the Zoological Society of London, London, England.
Young, J. Z., & Boycott, B. B. (1971). The anatomy of the nervous system of Octopus vulgaris: Clarendon Press Oxford.
Zelman, I., Galun, M., Akselrod-Ballin, A., Yekutieli, Y., Hochner, B., & Flash, T. (2009). Nearly automatic motion capture system for tracking octopus arm movements in 3D space. Journal of neuroscience methods, 182(1), 97-109.
Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., & Laschi, C. (2010). Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering: C, 31(6), 1230-1239.
Cyran, N., Klinger, L., Scott, R., Griffiths, C., Schwaha, T., Zheden, V., et al. (2010). Characterization of the Adhesive Systems in Cephalopods. Biological Adhesive Systems, 53-86.
Girod, P. (1884). Recherches sur la peau des céphalopodes. La ventouse. Arch. Zool. Exp. Gen, 2, 379-401.
Grasso, F. W. (2008). Octopus sucker-arm coordination in grasping and manipulation. American Malacological Bulletin, 24(1), 13-23.
Graziadei, P. (1962). Receptors in the suckers of Octopus. Nature, 195, 57-59.
Graziadei, P. (1964). Electron microscopy of some primary receptors in the sucker of Octopus vulgaris. Cell and Tissue Research, 64(4), 510-522.
Graziadei, P. (1965). Muscle receptors in cephalopods. Proceedings of the Royal Society of London. Series B. Biological Sciences, 161(984), 392.
Graziadei, P., & Gagne, H. (1976). Sensory innervation in the rim of the octopus sucker. Journal of Morphology, 150(3), 639-679.
Gutfreund, Y. (2000). The intricacies of flexible arms. Science Spectra(19), 28-37. can't find this anywhere anymore
Gutfreund, Y., Flash, T., Fiorito, G., & Hochner, B. (1998). Patterns of arm muscle activation involved in octopus reaching movements. The Journal of neuroscience, 18(15), 5976-5987.
Gutfreund, Y., Flash, T., Yarom, Y., Fiorito, G., Segev, I., & Hochner, B. (1996). Organization of octopus arm movements: a model system for studying the control of flexible arms. The Journal of neuroscience, 16(22), 7297-7307.
Gutnick, T., Byrne, R. A., Hochner, B., & Kuba, M. (2011). Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm. Current Biology, 21(6), 460-462.
Kier, W., & Thompson, J. (2003). Muscle arrangement, function and specialization in recent coleoids. Berliner Paläobiologische Abhandlungen, 3, 141-162.
Kier, W. M. (1982). The functional morphology of the musculature of squid (Loliginidae) arms and tentacles. Journal of Morphology, 172(2), 179-192.
Kier, W. M., & Smith, A. M. (1990). The morphology and mechanics of octopus suckers. The Biological Bulletin, 178(2), 126.
Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: the biomechanics of movement in muscular hydrostats. Zoological Journal of the Linnean Society, 83(4), 307-324.
Kier, W. M., & Stella, M. P. (2007). The arrangement and function of octopus arm musculature and connective tissue. Journal of Morphology, 268(10), 831-843.
Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., & Dario, P. (2009). Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 4, 015006.
Mather, J. A. (1998). How do octopuses use their arms? Journal of Comparative Psychology, 112(3), 306.
Matzner, H., Gutfreund, Y., & Hochner, B. (2000). Neuromuscular system of the flexible arm of the octopus: physiological characterization. Journal of Neurophysiology, 83(3), 1315-1328.
McMahan, W., & Walker, I. D. (2009). Octopus-inspired grasp-synergies for continuum manipulators.
Niven, J. E. (2011). Invertebrate Neurobiology: Visual Direction of Arm Movements in an Octopus. Current Biology, 21(6), R217-R218.
Nixon, M., & Dilly, P. (1977). Sucker surfaces and prey capture. Paper presented at the Symp. Zool. Soc. , London.
Packard, A. (1988). Visual tactics and evolutionary strategies. Cephalopods Present and Past, 89–103.
Rowell, C. (1963). Excitatory and inhibitory pathways in the arm of Octopus. Journal of experimental biology, 40(2), 257-270.
Rowell, C. (1966). Activity of interneurones in the arm of Octopus in response to tactile stimulation. Journal of experimental biology, 44(3), 589-605.
Smith, A. (1996). Cephalopod sucker design and the physical limits to negative pressure. Journal of experimental biology, 199(4), 949-958.
Smith, A. M. (1991). Negative pressure generated by octopus suckers: a study of the tensile strength of water in nature. Journal of experimental biology, 157(1), 257-271.
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T., & Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293(5536), 1845-1848.
Walker, I. D., Dawson, D. M., Flash, T., Grasso, F., Hanlon, R., Hochner, B., et al. (2005). Continuum robot arms inspired by cephalopods. Paper presented at the Proceedings of the 2005 SPIE Conference on Unmanned Ground Vehicle Technology IV, Orlando, Florida, USA.
Wells, M. (1963). Taste by touch: some experiments with Octopus. Journal of experimental biology, 40(1), 187-193.
Wells, M. J. (1978). Octopus. Physiology and Behaviour of an Advanced Invertebrate. Chapman and Hall, London.
Woolley, B., & Stanley, K. (2011). Evolving a single scalable controller for an octopus arm with a variable number of segments. Parallel Problem Solving from Nature–PPSN XI, 270-279.
VAVOURAKIS, V., KAZAKIDI, A., & TSAKIRIS, D. (2011). A FINITE ELEMENT METHOD FOR NON-LINEAR HYPERELASTICITY APPLIED FOR THE SIMULATION OF OCTOPUS ARM MOTIONS. ics.forth.gr. Retrieved from http://www.ics.forth.gr/~
Young, J. (1963). The number and sizes of nerve cells in Octopus. Paper presented at the Proceedings of the Zoological Society of London, London, England.
Young, J. Z., & Boycott, B. B. (1971). The anatomy of the nervous system of Octopus vulgaris: Clarendon Press Oxford.
Zelman, I., Galun, M., Akselrod-Ballin, A., Yekutieli, Y., Hochner, B., & Flash, T. (2009). Nearly automatic motion capture system for tracking octopus arm movements in 3D space. Journal of neuroscience methods, 182(1), 97-109.
2.21.2012
烏賊的偏振光視覺@Current Biology
High-resolution polarisation vision in a cuttlefish
http://www.cell.com/current-biology/abstract/S0960-9822(12)00011-5
2.20.2012
2.19.2012
訂閱:
文章 (Atom)